
Chapter 5

Software Project Planning

ASS IT .PROF . JUTHAWUT CHANTHARAMALEE

CURRICULUM OF COMPUTER SCIENCE

FACULTY OF SC IENCE AND TECHNOLOGY , SUAN DUSIT UNIVERSITY

Outline of this presentation

1. Project Planning

2. WBS-Work Breakdown Structure

3. PERT-Program Evaluation and Review Technique

4. Software Cost Estimation

5.1 Project Planning

Planning is essential and software development is no exception.

Achieving success in software development requires planning. Software

project planning involves deciding what tasks need to be done, in what

order to do the tasks, and what resources are needed to accomplish the

tasks.

5.2 WBS—Work Breakdown Structure

One of the first tasks is to break the large tasks into small tasks. It means

finding identifiable parts of the tasks. It also means finding deliverables and

milestones that can be used to measure progress.

The work breakdown structure (WBS) should be a tree structure. The top-level

breakdown usually matches the life cycle model (LCM) used in the organization. The

next-level breakdown can match the processes in the organization’s process model

(PM). Further levels are used to partition the task into smaller, more manageable

tasks.

The following are rules for constructing a proper work breakdown structure:

1. The WBS must be a tree structure.

There should be no loops or cycles in the WBS. Iterative actions will be shown in

the process model and/or the life cycle model.

2. Every task and deliverable description must be understandable and unambiguous.

The purpose of a WBS is communication with team members. If the team

members misinterpret what the task or deliverable is supposed to be, there will be

problems.

3. Every task must have a completion criterion (often a deliverable).

There must be a way to decide when a task is completed, because

subtasks that have no definite ending encourage false expectations of

progress. This decision is called a completion criterion. It may be a

deliverable, for example, a complete design for the project, and then a

peer review can decide if it is complete.

4. All deliverables (artifacts) must be identified.

A deliverable must be produced by some task or it won’t be produced.

5. Positive completion of the tasks must imply completion of the whole task.

The purpose of the work breakdown schedule is to identify the subtasks necessary

to complete the whole task. If important tasks or deliverables are missing, the whole

task will not be accomplished.

Example 5.1

Fig. 5-1. Life cycle model for cooking.

In making a loaf of bread, the life cycle model for cooking.

Fig. 5-2. Cooking process model.

The process model for cooking.

Example 5.2

Team XYZ wants to develop a face recognition system for use on the robot. The

system is intended to greet visitors to the robotics laboratory. It should recognize

faces it has seen before with a reasonable reliability. The first pass on the work

breakdown might recognize the following subtasks.

Example 5.2

Feasibility

Determine feasibility of vision.

Determine camera and software availability.

Schedule camera and vision software acquisition.

Risk Analysis

Determine vision risks.

Design

Design prototypes.

Prototype vision.

Example 5.2

Implementation

Code the image capture.

Code the image processing.

Code the image comparison.

Integrate with other robot software.

Testing

Test image capture.

Delivery

Document.

5.3 PERT—Program Evaluation and Review Technique

This technique creates a graph that shows the dependencies among the tasks.

Each task has an estimate of the time necessary to complete the task and a list of

other tasks that have to be completed before this task can be started

(dependencies).

The graph may not always have only one starting subtask or only one stopping

subtask. The whole task is only completed when all the subtasks are completed. The

graph can be used to calculate the completion times for all the subtasks, the

minimum completion time for the whole task, and the critical path of the subtasks.

5.3.1 ALGORITHM FOR COMPLETION TIMES

1. For each node, do step 1.1 (until completion times of all nodes are calculated)

1.1 If the predecessors are completed, then take the latest completions time of

the predecessors and add required time for this node.

2. The node with the latest completion time determines the earliest completion

time for project.

Apply this algorithm to Table 4-1, which shows an example of tasks and

dependencies. The same dependencies are shown in Fig. 4-3. To apply the

completion time algorithm, start with subtask a;it has no dependencies, so it can

start at the initial time (say, 0). It can complete at time 0 + 8 = 8. Similarly,

subtask b can complete at time 0 + 10 = 10.

Example 5.3

Table 5-1 Subtasks

Fig. 5-3. PERT diagram.

Example 5.3

Table 5-2 Subtasks

Since the completion times for subtasks a and b are now calculated, the

completion times for nodes c, d, and e can be calculated. Since the predecessors of

c finish at 8 and 10, subtask c can start at 10 and complete at 10 + 8 = 16. The

start time for d will be 8 and the completion time can be 8 + 9 = 17, and for e the

times will be 10 and 10 + 5 = 14.

Example 5.3

Now we can process subtasks f and g. The start times can be 17 and 16,

respectively. The completion times will be 17 + 3 = 20 for f and 16 + 2 = 18 for g.

Subtasks h and i can now be calculated with both starting at 21 and h competing

at 25 and i at 24. Table 4-2 has all of the start and completion times.

Example 5.3

5.3.2 CRITICAL PATH

The critical path is the set of tasks that determines the shortest possible

completion time. The completion time will be longer if there are insufficient

resources to do all parallel activities. However, the completion time can never be

made shorter by adding more resources.

5.3.3 ALGORITHMFOR MARKING CRITICAL PATH

1. Start with the node(s) with the latest completion time(s); mark it (them) as critical.

2. Select the predecessor(s) of the critical node(s) with latest completion time(s);

mark it (them) as critical. Continue Step 2 until reaching the starting node(s).

In Table 4-2 we can see the completion times of all of the subtasks. Subtask h has the

latest completion time, 25. Thus, we mark h as part of the critical path. The predecessors of h

are f and g. Subtask f has the latest completion time of those two subtasks, so f is marked as

part of the critical path. Subtask f has c and d as predecessors. Since c has the later

completion time, c is marked as part of the critical path. Subtask c has a and b as

predecessors, and since b has the later time, it is part of the critical path. Since we are now

at an initial subtask, the critical path is complete.

Example 5.4

5.3.4 SLACK TIME

Subtasks that are on the critical path have to be started as early as possible or

else the whole project will be delayed. However, subtasks that are not on the

critical path have some flexibility on when they are started. This flexibility is called

the slack time.

5.3.5 ALGORITHMFOR SLACK TIME

1. Pick the noncritical node with the latest ending time that has not been processed. If

the subtask has no successors, pick the latest ending time of all nodes. If the subtask

has successors, pick the earliest of the latest start times of the successor nodes. This is

the latest completion time for this subtask. Make the latest start time for this subtask to

reflect this time.

2. Repeat Step 1 until all noncritical path subtasks have been processed.

The noncritical subtask with the latest completion time is subtask i. Since it has no

successors, the latest completion time, 25, is used. This is added as the latest

completion time for i. Since 25 is 1 later than 24, the start time is changed from 21 to 21,22.

Now the latest non processed, noncritical subtask is g. Since h is the only successor of g, and

h must start by 21, g must end by 21. So the completion time of g comes 19,21 and the start

time becomes 17,19. The next subtask to be processed will be d. It has successors f and g.

Example 5.5

Subtask f has to start by 18, so d’s completion becomes 17,18, and its start becomes

8,9. The next subtask to be processed will be e. Subtask e has g and i as successors.

Subtask g’s latest start time is 19 and i’s is 22, so subtask e becomes 10,14 for start times

and 15,19 for completion times. The last subtask to be processed is a. It has successors c

and d. Subtask a has to complete by 9, so the completion time will be 8,9, and its start

time will be 0,1. Table 4-3 summarizes the results.

Table 5-3 Subtasks with Slack Time

Open MS Project (version 98). Select PERT view on left menu. Under the Insert pull-

down menu, insert a new task. Use the right mouse button to open task information. Change

the time for the task to 5 days. Drag from this task to create anew task with a dependency

on the first task, or go to the Insert menu to insert another new task. Create the tasks and

dependencies from Example 4.5. The tasks on the critical path will be shown in red. Use the

left menu bar to see the Gannt chart view of this project.

Example 5.6

5.4 Software Cost Estimation

The task of software cost estimation is to determine how many resources are needed to

complete the project. Usually this estimate is in programmer-months (PM).

There are two very different approaches to cost estimation. The older approach is called

LOC estimation, since it is based on initially estimating the number of lines of code that will

need to be developed for the project. The newer approach is based on counting function

points in the project description..

5.4.1 ESTIMATION OF LINES OF CODE (LOC)

The first step in LOC-based estimation is to estimate the number of

lines of code in the finished project. This can be done based on

experience, size of previous projects, size of a competitor’s solution, or by

breaking down the project into smaller pieces and then estimating the

size of each of the smaller pieces.

A standard approach is, for each piece
i
, to estimate the maximum possible size,

max
i
, the minimum possible size, min

i
, and the ‘‘best guess’’ size, best

i
. The

estimate for the whole project is 1/6 of the sum of the maximums, the minimums,

and 4 times the best guess:

Team WRT had identified seven sub pieces to their project. These are shown in

Table 5-4 with their estimates of the size of each sub piece.

Example 5.7

Table 5-4 Sub piece

Size Estimate (in LOC)

The estimates for each section are as follows:

5.4.2 LOC-BASED COST ESTIMATION

The basic LOC approach is a formula that matches the historical data. The basic formula

has three parameters:

Alpha,α, is the marginal cost per KLOC (thousand lines of code). This is the added cost for

an additional thousand lines of code. The parameter beta, β, is an exponent that reflects the

nonlinearity of the relationship.

A value of beta greater than 1 means that the cost per KLOC increases as the

size of the project increases. This is a diseconomy of scale. A value of beta less

than 1 reflects an economy of scale. Some studies have found betas greater than

1, and other studies have betas less than 1. The parameter gamma, γ, reflects

the fixed cost of doing any project. Studies have found both positive gammas and

zero gammas.

Company LMN has recorded the following data from previous projects. Estimate

what the parameters for the cost estimation formula should be and how much

effort a new project of 30 KLOC should take (see Table 5-5).

Example 5.8

Table 5-5 Historical Data

Analyzing or plotting this data would show a linear relationship between size and effort.

The slope of the line is 2.4. This would be alpha, , in the LOC-based cost estimation formula.

Since the line is straight (linear relationship), the beta, , is 1. The gamma, , value would be zero.

5.4.3 CONSTRUCTIVE COST MODEL (COCOMO)

COCOMO is the classic LOC cost-estimation formula. It was created by Barry

Boehm in the 1970s. He used thousand delivered source instructions (KDSI) as his

unit of size. KLOC is equivalent. His unit of effort is the programmer-month (PM).

5.4.3 CONSTRUCTIVE COST MODEL (COCOMO)

Boehm divided the historical project data into three types of projects:

1. Application (separate, organic, e.g., data processing, scientific)

2. Utility programs (semidetached, e.g., compilers, linkers, analyzers)

3. System programs (embedded)

5.4.3 CONSTRUCTIVE COST MODEL (COCOMO)

He determined the values of the parameters for the cost model for determining

effort:

Calculate the programmer effort

for projects from 5 to 50 KDSI (seeTable 5-6)

Example 5.9

5.4.3 CONSTRUCTIVE COST MODEL (COCOMO)

Boehm also determined that in his project data, there was a standard development time

based on the type of project and the size of the project. The following are the formulas for

development time (TDEV) in programmer-months:

Example 5.10 Table 5-7 COCOMO Development Time

Calculate the standard TDEV using the COCOMO

formulas for projects from 5 to 50 KDSI (see Table 5-7).

5.4.4 FUNCTION POINT ANALYSIS

The idea of function points is to identify and quantify the functionality required for the

project. The idea is to count things in the external behavior that will require

processing. The classic items to count are as follows:

1. Inquiries

2. Inputs

3. Outputs

4. Internal files

5. External interfaces

1. Inquiries are request-response pairs that do not change the internal data.

For example, a request for the address of a specified employee is an inquiry.

The whole sequence of asking, supplying the name, and getting the address would

count as one inquiry.

2. Inputs are items of application data that is supplied to the program.

The logical input is usually considered one item and individual fields are not

usually counted separately. For example, the input of personal data for an

employee might be considered one input.

3. Outputs are displays of application data.

This could be a report, a screen display, or an error message. Again, individual

fields are usually not considered separate outputs. If the report has multiple lines,

for instance, a line for each employee in the department, these lines would all be

counted as one output. However, some authorities would count summary lines as

separate outputs.

4. Internal files are the logical files that the customer understands must be

maintained by the system.

If an actual file contained 1000 entries of personnel data, it would probably

be counted as one file. However, if the file contained personnel data, department

summary data, and other department data, it would probably be counted as three

separate files for the purposes of counting function points.

5. External interfaces are data that is shared with other programs.

For example, the personnel file might be used by human resources for promotion and for

payroll. Thus, it would be considered an interface in both systems.

5.4.4.1 Counting Unadjusted Function Points

The individual function point items are identified and then classified as simple,

average, or complex. The weights from Table 5-8 are then assigned to each item

and the total is summed. This total is called the unadjusted function points.

There is no standard for counting function

points. Books have been written with different

counting rules. The important thing to

remember is that function points are trying to

measure the amount of effort that will be

needed to develop the software. Thus, things

that are related to substantial effort need to

generate more function points than things that

will take little effort.

Table 5-8 Function Point Weights

Example 5.11

The department wants a program that assigns times and rooms for each

section and creates a line schedule for the courses. The department has a list of

sections with the name of the assigned professor and the anticipated size. The

department also has a list of rooms with the maximum number of students each

room will hold There are also sets of classes that cannot be taught at the same

time. Additionally, professors cannot teach two courses at the same time.

5.4.5 PRODUCTIVITY

One of the important measures is the productivity of the software developers. This is

determined by dividing the total size of the finished product by the total effort of all the

programmers. This has units of LOC/programmer-day. An alternative is to measure the

productivity in terms of function points per programmer-day. Note that productivity includes

all the effort spent in all phases of the software life cycle.

Company XYZ spent the following effort for each life cycle phase of the latest

project (see Table 4-9). Calculate the effort in terms of LOC/programmer-day and

in terms of function points/programmer day. The function point estimate was 50

unadjusted function points. The finished project included 950 lines of code.

Example 5.12

5.4.6 EVALUATING ESTIMATIONS

To evaluate estimations, a measure needs to be calculated. Tom DeMarco proposed

the estimate quality factor (EQF). DeMarco defines the EQF as the area under the

actual curve divided by area between the estimate and the actual value. This is the

inverse of the percentage error or the mean relative error. Thus, the higher the EQF,

the better was the series of estimates. DeMarco said that values over 8 are reasonable.

The following estimates were given for a project that cost 3.5 million dollars when it was

completed after 11.5 months:

The total area is 11.5 months times 3.5 million = 40.25 million month-dollars. The

difference between the actual curve and the estimate is |2.3-3.5|*1.5+|3.1*3.5|*4+|3.9-

3.5|*2.5 +|3.4-3.5|*3.5=4.75 million month-dollars. The ratio is 40.25/4.75=8.7.

Example 5.13

5.4.7 AUTOMATED ESTIMATION TOOLS

Numerous tools are available on the Internet that will calculate COCOMO or

COCOMO2. Most have very simple interfaces. Search for COCOMO using any

browser, and it should find multiple sites.

